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ABSTRACT 

Ionic liquids (ILs) have garnered much attention in the field of analytical chemistry as 

tunable solvents with a wide array of applications. Magnetic ionic liquids (MILs) are a 

subclass of ILs that contain a paramagnetic component in their structure. This paramagnetic 

feature allows for them to be manipulated by an external magnetic field, possibly reducing 

the need for centrifugation, which is both a time and labor-intensive process that many 

analytical extraction techniques involve. Preexisting MILs possess characteristics such as 

high viscosity and low hydrolytic stability, which are detrimental for their potential use in 

analytical applications. This thesis introduces design and synthesis of MILs with low 

viscosity and high hydrophobicity to expand their usability in dispersive liquid-liquid 

microextraction (DLLME) methods. Furthermore, ILs with varying structures were 

synthesized for their use in an in situ DLLME method coupled to headspace gas 

chromatography mass spectrometry (HS-GC-MS) for the rapid analysis of ultraviolet (UV) 

filters from real water samples. These studies highlight the versatility of ILs and MILs for 

their application in analytical techniques.
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to ionic liquids and their use in microextraction techniques 

The continued development and understanding of ionic liquids (ILs) have opened a field 

of opportunity for many major disciplines of chemistry [1]. ILs are molten salts comprised of 

cations and anions with melting temperatures at or below 100 °C, possessing many favorable 

physicochemical properties such as low vapor pressure, high thermal stability, and high 

conductivity [2]. Their tunable structure gives them a distinct advantage over traditional 

organic solvents allowing for them to be tailored specifically towards a desired application [2, 

3]. Some common IL cation and anion structures are shown in Figure 1.1. 

 

Figure 1.1. Common cations and anions used in ILs. 

 

The use of ILs for sample preparation has been expanding rapidly over the last few decades 

[3]. Sample preparation is an essential part of the analytical process, which generally requires 

preconcentration and separation of target analytes from a complex matrix [4]. Traditional 

Cations

Anions
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procedures utilize techniques such as liquid-liquid extraction (LLE) and solid-phase extraction 

(SPE), which can be both time-consuming and labor-intensive. These techniques often utilize 

a large amount of harmful organic solvents. To overcome these drawbacks, much attention has 

been given to development of microextraction techniques. 

Microextraction techniques can be classified into two main categories, solid-phase 

microextraction (SPME) and liquid-phase microextraction (LPME). SPME is a versatile 

technique in which a fiber is coated with a material, generally polymeric in nature, to be utilized 

as an extraction phase [5]. The non-exhaustive nature of the extraction process along with the 

reusability of the fibers employed are considered to be advantages of SPME. However, SPME 

methods generally call for long extraction times, which reduce the throughput of the method. 

Liquid phase microextraction (LPME) techniques utilize small volumes of solvent to 

preconcentrate analytes from a sample matrix. Two examples of LPME are single drop 

microextraction (SDME) and dispersive liquid-liquid microextraction (DLLME). These 

LPME methods are widely used in industry because they are simple and inexpensive. In SDME, 

analytes partition into a small droplet of solvent (low µL scale volume) suspended from a 

syringe needle [6]. This technique can utilize both direct immersion and headspace sampling 

methods. Typically, long extraction times are needed for the analytes to reach an equilibrium 

between the sample matrix and the solvent droplet. 

In DLLME, a mixture of extraction and disperser solvents are placed into a sample solution 

and dispersed into fine droplets by vortex or sonication [7]. Due to the high surface area of 

extraction phase created by dispersion, analytes undergo rapid equilibration with the extraction 

phase and sample matrix [8]. Traditionally, centrifugation is necessary to sediment and collect 

the extraction phase following extraction. The analyte-enriched extraction phase can be 



www.manaraa.com

3 
 

directly injected into a gas chromatography (GC) or high-performance liquid chromatography 

(HPLC) instrument for analysis, or alternatively, analytes can be desorbed using high 

temperatures or a small amount of organic solvent prior to analysis. ILs can be utilized in 

LPME methods, conferring high selectivity by incorporation of desired functional groups into 

the IL structures. In in situ DLLME, an ion-exchange reagent is added along with an IL to an 

aqueous sample solution to create a hydrophobic IL that is immiscible with the aqueous phase 

[9]. This metathesis reaction and extraction are combined into one step, leading to fast and 

efficient preconcentration and sample clean up procedure.  

 

1.2 Introduction to magnetic ionic liquids and their application in sample preparation 

Magnetic ionic liquids (MILs) are a sub class of ILs that incorporate a paramagnetic center 

into the cation or anion portion of the IL structure [10]. Incorporating this paramagnetic 

component can be advantageous in many sample preparation techniques. In DLLME 

procedures, the use of MILs allows collection of the extraction phase by introducing an 

external magnetic field without the need for centrifugation [11]. A comparison of traditional 

DLLME and MIL-based DLLME procedures are shown in Figure 1.2. 

There are many challenges to creating MILs that are compatible with extraction techniques. 

Since many extractions utilize aqueous media, MILs are generally required to be extremely 

hydrophobic to prevent dissolution and or possible hydrolysis of the MIL. Further, the high 

viscosity of many MILs (or ILs) limits their application in sample preparation procedures. 

Existing hydrophobic MILs exhibit much higher viscosity when compared to some traditional 

ILs, leading to difficulties in utilizing MILs for techniques such as DLLME [10]. Therefore, 
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design of a new generation of MILs that possess low viscosity, high magnetic susceptibility 

and hydrophobicity is essential to expand their application in analytical chemistry. 

 

 

Figure 1.2. Schematic of conventional and MIL based DLLME procedures 

1.3 Organization of the thesis 

The main objectives of this thesis are to synthesize MILs suitable for analytical applications 

and to utilize traditional ILs in microextraction procedures paired with gas chromatography to 

monitor organic compounds. According to these main objectives, this thesis has been divided 

into the following chapters: 

Chapter 2 describes the synthesis and characterization of a new class of magnetic ionic liquids 

suitable for their use in analytical chemistry. The synthesized MILs are highly stable in 

Aqueous analyte 

solution

Hydrophobic 

solvent droplet

Dispersed 

solvent droplets

Centrifugation 

(typically 5-10 

min)

Analyte enriched 

sedimented hydrophobic 

phase

DLLME

Aqueous 

analyte solution

Addition of  

hydrophobic 

MIL droplet

Hydrophobic

MIL droplet

Dispersed 

MIL droplets

Vortex

Analyte 

enriched MIL 

droplet

MIL-based DLLME
Handheld 

neodymium rod 

magnet

Collection

VortexAddition of  

hydrophobic 

solvent 



www.manaraa.com

5 
 

aqueous environments and have low viscosities making them attractive for techniques such as 

DLLME. Furthermore, high magnetic susceptibilities were achieved with the addition of rare 

earth metals dysprosium and gadolinium into the anion structure. 

Chapter 3 describes the development of an IL-based in situ DLLME extraction method in 

combination with headspace gas chromatography paired with mass spectrometry for the 

analysis of ultraviolet filters. The developed method allowed for rapid preconcentration of 

analytes into the IL extraction phase and was compatible with pool and lake water samples. 

Chapter 4 provides a short summary of the completed work. 
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CHAPTER 2 

SYNTHESIS AND CHARACTERIZATION OF LOW VISCOSITY 

HEXAFLUOROACETYLACETONATE-BASED HYDROPHOBIC MAGNETIC 

IONIC LIQUIDS 

 

Reprinted with permission from New Journal of Chemistry, 2017, 41, 5498-5505  

 

Copyright © 2017, RSC 

 

Stephen A. Pierson, Omprakash Nacham, Kevin D. Clark, He Nan, Yaroslav 

Mudryk, and Jared L. Anderson 

 

 

Abstract 

Magnetic ionic liquids (MILs) are distinguished from traditional ionic liquids (ILs) by 

the incorporation of a paramagnetic component within their chemical structure. Hydrophobic 

MILs are novel solvents that can be used in many applications, including liquid-liquid 

extraction (LLE) and catalysis. Low viscosity and low water solubility are essential features 

that determine their feasibility in LLE. In this study, extremely hydrophobic MILs were 

synthesized by using transition and rare earth metal hexafluoroacetylacetonate chelated 

anions paired with the trihexyl(tetradecyl)phosphonium ([P66614
+]) cation. Hydrophobic MILs 

exhibiting water solubilities less than 0.01% (v/v) were synthesized in a rapid two-step 

procedure. Furthermore, the viscosities of the MILs are among some of the lowest ever 

reported for hydrophobic MILs (276.5-927.9 centipoise (cP) at 23.7 oC) dramatically 

improving the ease of handling these liquids. For the first time, the magnetic properties of 

MILs possessing hexafluoroacetylacetonate chelated metal anions synthesized in this study 

are reported using a superconducting quantum interference device (SQUID) magnetometer. 

Effective magnetic moments (µeff) as high as 9.7 and 7.7 Bohr magnetons (µB) were achieved 
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by incorporating high spin dysprosium and gadolinium ions, respectively, into the anion 

component of the MIL. The low viscosity, high hydrophobicity, and large magnetic 

susceptibility of these MILs make them highly attractive and promising solvents for 

separations and purification, liquid electrochromic materials, catalytic studies, as well as 

microfluidic applications. 

 

2.1 Introduction 

Ionic liquids (ILs) have garnered much attention in the last decade due to an array of 

attractive physicochemical properties including negligible vapor pressure, high thermal 

stability, high conductivity, and tunable miscibility with water and organic solvents. These 

fascinating compounds are generally comprised of an organic cation paired with an 

organic/inorganic anion and possess melting points at or below 100 oC.1 The physicochemical 

properties of ILs can be altered and tuned through the careful manipulation of cation/anion 

pairing making them highly versatile materials.2-7 

Magnetic ionic liquids (MILs) are a subclass of ILs that share many of the advantageous 

physicochemical properties of traditional ILs.8-10 MILs possess a paramagnetic metal center 

within the cation and/or anion that allow them to be modulated by an external magnetic field. 

The 1-butyl-3-methylimidazolium tetrachloroferrate(III) ([BMIM+][FeCl4
-]) MIL was the 

first example of an IL that incorporated a paramagnetic center in its chemical structure.8, 11 

Since then, a variety of transition and rare earth metals, such as Co(II), Mn(II), Fe(III), Dy(III), 

Gd(III), Ho(III), and Nd(III), have been used as paramagnetic centers in the preparation of 

MILs.12 
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MILs have enjoyed increasing popularity in applications such as liquid-liquid extractions 

(LLE), liquid-liquid microextractions (LLME), stationary phases for comprehensive two-

dimensional gas chromatography (GC × GC), electrochemical applications, and catalysis.12-

15 The promising field of MILs is expanding rapidly, and thus the need for more robust, 

hydrophobic MILs has never been greater. Applications that utilize MILs as extraction 

solvents from aqueous environments require MILs that are extremely hydrophobic and 

chemically stable to retain their magnetic susceptibility and not suffer from dissolution or 

loss of the solvent.16 Importantly, the magnetic susceptibility of MILs can only be exploited 

if they possess very little solubility in the solvent to which they are added (e.g., water). MILs 

that are room temperature liquids are required for applications performed at ambient 

temperatures. Therefore, MILs possessing high hydrophobicity, low melting points, low 

viscosity, as well as high magnetic susceptibility are all favorable properties when they are 

utilized as solvent systems in a number of applications (e.g., extractions and catalytic 

solvents).12-14 Additionally, there is an underlying issue in MIL design that relates to the 

chemical stability of the MIL in an aqueous environment. Although it is a popular choice for 

the anion component of MILs, the [FeCl4
-] anion has been shown to undergo hydrolysis in 

water thereby influencing solution pH and limiting the amount of MIL that can be recovered 

in applications involving water.18 A design challenge revolves around creating MILs that 

encompass all of the aforementioned features with minimal compromise of any single feature.  

The incorporation of hydrophobic trihexyl(tetradecyl)phosphonium ([P66614
+]) and 

Aliquat 336 cations has been a well-utilized strategy for creating hydrophobic ILs.12,19 

Furthermore, the weakly coordinating bis[(trifluoromethyl)sulfonyl]imide [NTf2
-] anion has 

been used to increase the hydrophobicity as well as lower the viscosity for many classes of 
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ILs. However, MILs with [NTf2
-] anions require either a multi-cationic platform with 

heteroanions or a paramagnetic component in the cation of the MIL to establish paramagnetic 

susceptibility. MILs utilizing the [NTf2
-] anion in di- or tricationic frameworks involve 

tedious multistep synthetic pathways20-22 while some MILs with paramagnetic cations have 

been shown to exhibit poor stability under ambient conditions. Alternatively, the 

hydrophobicity and viscosity of MILs can be significantly improved by pairing a 

hydrophobic cation with a weakly coordinating (hydrophobic) anion that can chelate with 

paramagnetic metal centers. In order to circumvent these challenges and produce 

hydrophobic ILs with low viscosity, hexafluoroacetylacetonate ([hfacac−]) metal chelates 

have been explored in which the bidentate ligand complexes with transition or rare earth 

metals by coordination of both [hfacac−] oxygens to the metal center.23,24  

In this study, a novel two-step synthesis was developed to create low melting, room 

temperature transition and rare earth metal-based MILs. Co(II), Mn(II), and Ni(II) metal 

centers were incorporated into the MIL structure to create 

trihexyl(tetradecyl)phosphonium tris(hexafluoroacetylaceto)cobaltate(II) ([P66614
+] 

[Co(II)(hfacac)3
-]), [P66614

+] tris(hexafluoroacetylaceto)manganate(II) ([Mn(II)(hfacac)3
-]), 

[P66614
+] tris(hexafluoroacetylaceto)nickelate(II) ([Ni(II)(hfacac)3

-]) MILs.  Three rare earth 

metal centers dysprosium(III), gadolinium(III) and neodymium(III) were used to prepare 

[P66614
+] tetrakis(hexafluoroacetylaceto)dysprosate(III) ([Dy(III)(hfacac)4

-]), [P66614
+] 

tetrakis(hexafluoroacetylaceto)gadolinate(III) ([Gd(III)(hfacac)4
-]), and 

[P66614
+] tetrakis(hexafluoroacetylaceto)neodymate(III) ([Nd(III)(hfacac)4

-]) MILs. It was 

observed that all of the prepared MILs exhibited water solubilities less than 0.01% (v/v), 

making them ideal for MIL-based applications in aqueous systems.  Furthermore, these MILs 
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were found to be soluble in nearly 15 organic solvents. Viscosities of the synthesized MILs 

ranged from 276.5 centipoise (cP) to 927.9 cP at 23.7 oC, making them among the least 

viscous hydrophobic MILs ever reported. Thermal properties of the MILs were investigated 

by monitoring the onset of volatilization/decomposition using flame ionization detection with 

thermal stabilities ranging from 130-225 oC. In addition, incorporation of Gd(III) and Dy(III) 

metal centers produced MILs with magnetic moments (µeff) of 7.7 and 9.7 Bohr magnetons 

(µB), respectively, as determined by SQUID magnetometry. This new class of MILs possess 

high hydrophobicity, low melting points, low viscosity, and high magnetic susceptibility 

making them ideal solvents for a number of applications ranging from catalysis to 

microfluidic applications where the MIL can be readily controlled and manipulated within 

the device. 

 

2.2 Experimental 

2.2.1 Materials 

The reagents ammonium hydroxide (28-30% solution in water) and 1,1,1,5,5,5-

hexafluroacatelyacetone (99%) were purchased from Acros Organics (Morris Plains, NJ, 

USA.) Gadolinium(III) chloride hexahydrate (99.9%) and manganese(II) chloride 

tetrahydrate (98.0-101.0%) were purchased from Alfa Aesar (Ward Hill, MA, USA.) 

Acetonitrile (99.9%), hexane (98.5%), methanol (99.9%), cobalt(II) chloride hexahydrate 

(98%), dysprosium(III) chloride hexahydrate (99.9%), nickel(II) chloride (98%), and 

neodymium(III) chloride hexahydrate were purchased from Sigma Aldrich (St. Louis, MO, 

USA). Anhydrous diethyl ether (99.0%) was purchased from Avantor Performance Materials 

Inc. (Center Valley, PA, USA). Ethanol (100%) was purchased from Decon Labs (King of 
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Prussia, PA, USA). Deuterated DMSO was obtained from Cambridge Isotope Laboratories 

(Andover, MA, USA.) All solvents and reagents were used as received without any additional 

drying or purification. Ultra-pure water (18.2 MΩ cm) was obtained from a Milli-Q water 

purification system (Millipore, Bedford, MA, USA). Trihexyl(tetradecyl)phosphonium 

chloride (>93%) was purchased from Strem Chemical (Newburyport, MA, USA).  

Trihexyl(tetradecyl)phosphonium chloride was further purified by dissolving 20 g of the IL 

in 50 mL of acetonitrile. The acetonitrile layer was washed three times with 5 mL aliquots of 

hexane. Acetonitrile was subsequently evaporated off under reduced pressure followed by 

drying of the IL at 50° C in a vacuum oven.  

NMR spectra (1H) were recorded using a Bruker 500 MHz nuclear magnetic resonance 

spectrometer. Solvent peaks were used as reference values for the reporting of chemical shifts. 

Elemental analyses were obtained using a Perkin Elmer 2100 Series II CHN/S Analyzer 

(Waltham, MA, USA). Mass spectra were obtained using an Agilent 6230 TOF LC/MS 

(Santa Clara, CA, USA). Viscosity measurements were obtained using a Wells/Brookfield 

DV1 cone and plate viscometer using a CPA-51Z cone spindle. Each MIL was dried in a 

vacuum oven for 48 hours at 50 oC ensuring any water or residual solvents were completely 

removed from the MILs.  Sample volumes of 0.5 mL were used for all MILs at a temperature 

(23.7 oC). Thermal stabilities of MILs 1-6 (see Table 2.1 and Scheme 2.1) were tested by 

examining the thermal volatilization/decomposition of the MIL when the MIL was used as a 

stationary phase in gas chromatography.34 The MILs were coated onto a 3 m capillary column 

with a 0.28 µm film thickness using the static coating method. The [P66614
+][Cl-] IL was also 

coated under the same conditions and was used as a reference. These tests were run using a 
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temperature program starting at 40 oC and increased at 1 oC/min to 350 oC on an Agilent 6850 

gas chromatograph with a flame ionization detector (Santa Clara, CA, USA). 

2.2.2 Preparation of transition metal-based MILs 

MILs 1-3 were synthesized by dissolving 10 mmol of ammonium hydroxide in 30 mL of 

ethanol. The reaction vessel was then sealed with a rubber septum and 10 mmol of 

hexafluoroacetylacetone was added dropwise at a rate of approximately 1 mL/min to the 

reaction via syringe. A white vapor was allowed to settle before adding 3.3 mmol of cobalt(II) 

chloride hexahydrate. The reaction was allowed to stir at room temperature for 5 hours. The 

solvent was removed under reduced pressure and the crude product was redissolved in 20 mL 

of diethyl ether and washed several times with 5 mL aliquots of deionized water until the 

aqueous fraction yielded no precipitate during a AgNO3 test. Diethyl ether was evaporated 

and the anion was allowed to dry at 50°C overnight under reduced pressure. 1 mmol of the 

anion was added to 1 mmol of purified phosphonium chloride and dissolved in 30 mL of 

methanol. This reaction was allowed to stir overnight at room temperature. The solvent was 

evaporated and 20 mL of diethyl ether was added to dissolve the crude product. The ether 

layer was washed several times with 5 mL aliquots of deionized water until the aqueous 

fraction yielded no precipitate during a AgNO3 test. Ether was evaporated off and MIL 1 was 

dried at 50°C overnight under reduced pressure. For MILs 2 and 3, the same procedure was 

followed using manganese(II) chloride tetrahydrate and nickel(II) chloride. 

2.2.3 Preparation of rare earth-based MILs 

MILs 4-6 were synthesized by dissolving 10 mmol of ammonium hydroxide in 30 mL of 

ethanol. The reaction vessel was then sealed with a rubber septum and 10 mmol of 

hexafluoroacetylacetone was added dropwise at a rate of approximately 1 mL/min to the 
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reaction via syringe. A white vapor was allowed to settle before adding 2.5 mmol of 

dysprosium(III) chloride hexahydrate. The reaction was allowed to stir at room temperature 

for 5 hours. The solvent was removed under reduced pressure and the crude product was 

redissolved in 20 mL of diethyl ether and washed several times with 5 mL aliquots of 

deionized water until the aqueous fraction yielded no precipitate during a AgNO3 test. Diethyl 

ether was evaporated and the anion was allowed to dry at 50°C overnight under reduced 

pressure. 1.2 mmol of the anion salt was added to 1 mmol of purified phosphonium chloride 

and dissolved in 30 mL of methanol. This reaction was allowed to stir overnight at room 

temperature. The solvent was evaporated and 10 mL of hexane was added to the crude 

product to precipitate out any unreacted anion salt and filtered off. Once more, the solvent 

was evaporated and 20 mL of diethyl ether was added to dissolve the crude product. The ether 

layer was washed several times with 5 mL aliquots of deionized water until the aqueous 

fraction yielded no precipitate during a AgNO3 test. Ether was evaporated off and MIL 4 was 

dried at 50°C overnight under reduced pressure. For MILs 5 and 6, the same procedure was 

followed using gadolinium(III) chloride hexahydrate and neodymium(III) chloride 

hexahydrate. 

2.2.4 Characterization of Intermediates 

1A. Red solid. Yield 82%. TOF LC/MS: m/z (-) 680.4. 

2A. Yellow solid. Yield 79%. TOF LC/MS: m/z 676.4. 

3A. Green solid. Yield 81%. TOF LC/MS: m/z (-) 679.4. 

4A. White solid. Yield 83%. TOF LC/MS: m/z (-) 992.7. 

5A. White solid. Yield 82%. TOF LC/MS: m/z (-) 986.7. 

6A. Pink solid. Yield 81%. TOF LC/MS: m/z (-) 972.6. 



www.manaraa.com

14 
 

2.2.5 Characterization of MILs 

Characterization MIL 1 

Dark red viscous liquid. Yield 92 %. Elem. anal. calcd (%) C47H71CoF18O6P: C, 48.50; H, 

6.15; N, 0. Found: C, 49.09; H, 6.31; N, 0.03. TOF LC/MS: m/z (+) 483.4; (-) 680.4. 

Characterization MIL 2 

Light orange viscous liquid. Yield 91 %. Elem. anal. calcd (%) C47H71MnF18O6P: C, 48.67; 

H, 6.17; N, 0. Found: C, 48.89; H, 6.22; N, 0.37. TOF LC/MS: m/z (+) 483.4; (-) 676.4. 

Characterization MIL 3 

Dark green viscous liquid. Yield 90 %. Elem. anal. calcd (%) C47H71NiF18O6P: C, 48.51; H, 

6.15; N, 0. Found: C, 48.72; H, 6.22; N, 0.27. TOF LC/MS: m/z (+) 483.4; (-) 679.4. 

Characterization MIL 4 

Light gold viscous liquid. Yield 93 %. Elem. anal. calcd (%) C52H72DyF24O8P · 2H2O: C, 

41.35; H, 5.07; N, 0. Found: C, 41.39; H, 4.74; N, 0.25 TOF LC/MS: m/z (+) 483.4; (-) 992.7. 

Characterization MIL 5 

Light yellow viscous liquid. Yield 91 %. Elem. anal. calcd (%) C52H72GdF24O8P · 2H2O: C, 

41.49; H, 5.09; N, 0. Found: C, 41.85; H, 4.67; N, 0.31 TOF LC/MS: m/z (+) 483.4; (-) 986.7. 

Characterization MIL 6 

Light pink viscous liquid. Yield 90 %. Elem. anal. calcd (%) C52H72NdF24O8P · 2H2O: C, 41.85; 

H, 5.13; N, 0. Found: C, 41.82; H, 4.53; N, 0.28 TOF LC/MS:m/z (+) 483.4; (-) 972.6. 
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2.3 Results and Discussion 

2.3.1 Preparation and Evaluation of Hydrophobic MIL Structures.  

ILs comprised of heavily alkylated phosphonium-based cations (i.e., [P66614
+]) exhibit high 

hydrophobicity with relatively low melting points due largely to its asymmetry.27 In addition, 

the [P66614
+][Cl-] IL is commercially available making the [P66614

+] cation an attractive 

candidate for producing hydrophobic ILs. As shown in Scheme 2.1, reaction of ammonium 

hexafluoroacetylacetonate ([NH4
+][hfacac-]) with various transition and rare earth metal 

centers yields the hydrophobic ammonium-based salt intermediates 1a-6a that do not dissolve 

in water, even at very high ratios of water to salt. Pairing of intermediate 1a to an imidazolium-

based cation was carried out for preliminary viscosity and hydrophobicity testing. A metathesis 

reaction was performed between  

 

Scheme 2.1. Synthesis of transition metal and rare earth-based magnetic ionic liquids 

 

1-(6-hydroxyhexyl)-3-methylimidazolium chloride [MC6OHIM+][Cl-] and intermediate 1a to 

form [MC6OHIM+] [Co(II)(hfacac)3
-]. The resulting MIL was soluble in water as determined 

by an obvious color change in the aqueous solution two hours after addition of the MIL. 

Furthermore, the neat MIL could not be transferred with a pipette at room temperature due to 
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its high viscosity. Pairing the cation of the hydrophobic ammonium-based Aliquat 336 with 

intermediate 1a also resulted in a very viscous MIL that could not be drawn into a pipette. 

Since the broad applicability of hydrophobic MILs is very much dependent upon the ease with 

which they can be transferred using traditional liquid handling methods, the [P66614
+] cation 

was selected for preparation of the hfacac-based MILs.  

Previously, transition metal hexafluoroacetylacetonate MILs were created in two different 

synthetic pathways, both involving a three-step synthesis.23,24 In this study, the creation of 

metal salts 1a-6a (Scheme 2.1) was achieved in a one-pot synthesis by reacting ammonium 

hydroxide, hexafluoroacetylacetone, and the metal chloride salt. Reaction yields greater than 

81% were achieved after 5 hours of total reaction time. It is important to highlight in this 

synthesis method the need to add hexafluoroacetylacetone via syringe to the capped reaction 

vessel containing ethanol and ammonium hydroxide. The acid-base reaction between 

hexafluoroacetylacetone and ammonium hydroxide causes a vapor to form inside the reaction 

vessel. Loss of this vapor resulted in low product yields <20%, presumably due to the 

vaporization of both hexafluoroacetylacetone and ammonium hydroxide (which have boiling 

points <75 oC). The synthesis of the chelated metal salt was followed by a metathesis reaction 

between intermediates 1a-3a and ([P66614
+][Cl-]), thereby producing transition metal-based 

MILs 1-3 (Scheme 2.1) in a total of two steps.  

The chelation of hexafluoroacetylacetone to neodymium was also previously reported and 

although the crystal structure was isolated, the synthesis was limited by the solubility of the 

cation in the aqueous phase.23 Furthermore, the reported procedure required reaction of the rare 

earth oxide NdO3 with bis(trifluoromethane)sulfonamide (HNTf2), an expensive reagent when 

compared to hexafluoroacetylacetone. By eliminating the use of HNTf2, the cost of synthesis 
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of a 20 g batch of these rare earth-based MILs can be lowered from approximately $380 to 

approximately $90. To circumvent the limitations of this reaction, a synthesis similar to the 

transition metal analogues (Scheme 2.1) was followed to produce intermediates 4a-6a after 

five hours in yields greater than 80%. A subsequent metathesis reaction between 4a-6a and 

[P66614
+][Cl-] generated MILs 4-6 (Scheme 2.1). This synthetic strategy allows for the 

incorporation of rare earth metal centers possessing higher magnetic susceptibility, such as 

gadolinium and dysprosium, in a two-step synthesis.   

The water solubility of these MILs was tested by pipetting a 1 µL droplet of MIL into 10 

mL of deionized water to create a 0.01% (v/v) solution. After pipetting the MIL into the 

aqueous sample, the MIL was observed to form a wide droplet that rests on top of the solution. 

Vortexing the MIL droplet caused dispersion of the MIL into fine microdroplets that were 

suspended within the aqueous solution, ultimately settling at the bottom of the vessel. The 

aqueous solution exhibited no observable change in color or pH, and the MIL droplets still 

responded readily to an external magnetic field after three days of suspension in the aqueous 

phase. These are all highly attractive features required in the design of low viscosity, 

hydrophobic MILs that possess high magnetic susceptibility. To demonstrate the 

hydrophobicity of these MILs compared to other available hydrophobic MILs, 50 µL of 

[P66614
+][FeCl4

-], [P66614
+][Co(II)(hfacac)3

-], and [P66614
+][Nd(III)(hfacac)4

-] were pipetted into 

separate scintillation vials containing 12 mL of deionized water. Each MIL was vortexed and 

heated to 85 oC for 10 minutes. Figure 2.1 shows a solution of the [P66614
+][FeCl4

-] MIL 

dissolving into the aqueous solution noted by discoloration while both 

[P66614
+][Co(II)(hfacac)3

-] and [P66614
+][Nd(III)(hfacac)4

-] MILs exhibit no sign of dissolution 

into the aqueous phase. 
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Figure 2.1. [P66614
+][FeCl4

-] (left), [P66614
+][Co(II)(hfacac)3

-] (middle), and 

[P66614
+][Nd(III)(hfacac)4

-] (right) before and after heating for 10 minutes at 85 oC. 

 

 

The toxicity of the series of hydrophobic MILs was investigated using Escherichia coli (E. 

coli) as a model organism. After vortexing the bacteria in aqueous solution with each of the 

six studied hydrophobic MILs, no detectable differences in colony proliferation were observed 

for the Co(II), Mn(II), Ni(II), Dy(III), and Nd(III)-based MILs.25 However, treatment with the 

[P66614
+][Gd(III)(hfacac)4

-] resulted in diminished growth of the bacteria indicating that the 

Gd(III)-based MIL possesses cytotoxicity toward E. coli K12 cells. 

2.3.2 Solvent Miscibility 

Owing to their unique solvation capabilities and high thermal stability, ILs have been 

successfully employed in organic synthesis either as reaction media or catalysts. An evaluation 

of the hydrophobic MIL solubility in a wide range of organic solvents may provide a 

fundamental understanding into their solvent properties. This could be instrumental for 

designing MIL-based reaction media, where the MIL can be selectively separated from the 

reaction products using an external magnetic field. The study was tested in 15 different organic 

solvents possessing a wide range of polarities. Table 2.1 shows the solubility of each MIL in 
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the different organic solvents. The transition-metal based MILs (MILs 1-3) were fully miscible 

in all of the organic solvents except DMSO. A trend can be observed that the transition metal-

based MILs show full miscibility in solvents with Reichardt’s polarity index values26 ranging 

from 0.117 (ethyl ether)-0.762 (methanol) at 20% (v/v) MIL to solvent ratio, with the exception 

of DMSO. However, as the polarity value of the solvent drops below 0.117, the transition-

metal based MILs show decreased solubilities of 10% (v/v) MIL to solvent ratio. All of the 

transition metal-based MILs exhibited some solubility in DMSO, however, it was observed 

 

 

 

Table 2.1. Physicochemical and Magnetic Properties of Transition and Rare Earth Metal-based 

MILs 

MIL Abbreviation 
MW 

(g/mol) 

Viscosity 

(cP)a 
Solubility µeff (µB) 

1 [P66614
+][Co(II)(hfacac)3

-] 1164.0 575.8 Sb,c,e 4.3 

2 [P66614
+][Mn(II)(hfacac)3

-] 1160.0 401.8 Sb,c,e 5.8 

3 [P66614
+][Ni(II)(hfacac)3

-] 1163.7 927.9 Sb,c,e 2.8 

4 [P66614
+][Dy(III)(hfacac)4

-] 1474.6 291.5 Sc,d,e 9.7 

5 [P66614
+][Gd(III)(hfacac)4

-] 1469.3 276.5 Sc,d,e 7.7 

6 [P66614
+][Nd(III)(hfacac)4

-] 1456.3 299.4 Sc,d,e 2.8 
aViscosity measurements were performed at 23.7 oC. bSoluble in hexane, heptane, toluene, and benzene at 10% 

(v/v) MIL to solvent ratio. cSoluble in acetone, acetonitrile, chloroform, dichloromethane, dioxane, ethanol, ethyl 

acetate, diethyl ether, methanol, isopropyl alcohol at 20% (v/v) MIL to solvent ratio. dSoluble in hexane, heptane, 

toluene, and benzene at 20% (v/v) MIL to solvent ratio. eInsoluble in water at 0.01% (v/v) MIL to water ratio. µeff 

= effective magnetic moment in Bohr magnetons (µB) determined from magnetic susceptibility data (from 

Quantum design SQUID magnetometer). 

 

 

that fine droplets of insoluble MIL remain at a 10% (v/v) MIL to solvent ratio. The rare earth-

based MILs were miscible in all of the tested solvents at 20% (v/v) MIL to solvent ratios. 

Furthermore, the rare earth-based MILs exhibit higher solubility in non-polar solvents such as 

benzene, toluene, heptane, and hexane when compared to the transition metal-based MILs. The 

lipophilicity of rare earth-based MILs is greater than that of the transition metal-based MILs 

due to an additional coordinated hexafluoroacetylacetonate ligand,27 resulting in higher 
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solubility of the rare earth-based MILs in some non-polar solvents. The solubility of these 

MILs in many different organic solvents adds to their versatility and use in numerous 

applications. 

2.3.3 Viscosity 

Many previously synthesized hydrophobic MILs such as [P66614
+] tetrachloromanganate(II) 

([P66614
+]2[MnCl4

2-]), [P66614
+] tetrachloroferrate(III) ([P66614

+][FeCl4
-]), and  [P66614

+] 

hexachlorogadolinate(III) ([P66614
+]3[GdCl6

3-]) possess high viscosities ranging from 650-

83450 cP at 25 oC, which can be problematic when using them for a number of applications.12,29 

In this study, a strategy was implemented to lower the viscosity by creating a singly charged 

weakly coordinating metal anion paired with a cation that has previously been shown to 

produce MILs with low viscosity.  The [P66614
+][FeCl4

-] MIL possesses a viscosity of 650 cP 

at 25 oC, which is much lower compared to the [P66614
+]2[MnCl4

2-] (75230 cP at 25oC) and 

[P66614]3[GdCl6
3-] (18390 cP at 25 oC) MILs.28  The use of a β-diketonate ligand allows for an 

overall singly charged anion as well as high spin states for some of the metal centers. 

Viscosities of the MILs produced in this study are given in Table 2.1. The transition metal-

based MILs all exhibit higher viscosities than the rare earth MILs, with the highest viscosity 

of 927 cP measured for the nickel-based MIL. An increasing trend of viscosities for the 

transition-metal MILs can be observed with a decrease in atomic radii from manganese to 

nickel (401.8 cP – 927.9 cP). As atomic radii of transition metals decrease, the metal-chelate 

bond distance also decreases,29 reducing the overall size of the anion and increasing the 

strength of intermolecular forces and viscosity of these MILs. 
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Figure 2.2. [P66614
+]2[MnCl4

2-] (left), [P66614
+][Ni(II)(hfacac)3

-] (middle), and 

[P66614
+][Nd(III)(hfacac)4

-] (right) before and after inversion for 1 second. 

 

 This trend in viscosity is also seen with other [P66614
+] based magnetic ionic liquids with 

[CoCl4
2-] and [MnCl4

2-] anions.28 The rare earth metal MILs possess exceedingly low 

viscosities at 23.7 oC (<300 cP) when compared to other [P66614
+] based MILs such as 

[P66614
+][FeCl4

-] and [P66614
+]2[MnCl4

2-]. The lower viscosity of rare-earth MILs compared to 

transition metal-based MILs can be attributed to the bulkier rare earth anions which create a 

less compact environment limiting intermolecular forces and reducing viscosity. Figure 2.2 

compares the viscosities of [P66614
+]2[MnCl4

2-], [P66614
+][Ni(II)(hfacac)3

-], and 

[P66614
+][Nd(III)(hfacac)4

-] by performing a 1 second inversion of each MIL.  The 

[P66614
+]2[MnCl4

2-] MIL exhibits little to no movement down the vial due to its high viscosity 

while the [P66614
+][Ni(II)(hfacac)3

-] and 

[P66614
+][Nd(III)(hfacac)4

-] MILs flow easily toward the bottom of the vial A visual comparison 

of viscosity of all MILs synthesized in this study as well as a side-by-side comparison of two 

different Mn-based MILs is demonstrated in Figures A12 and A13. It should also be noted that 

all of the studied hexafluoroacetylacetonate-based MILs could be easily pipetted at room 

temperature without heating. 
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2.3.4 Thermal Stability 

The thermal stability of all MILs was tested using gas chromatography to reveal the onset 

temperature of volatilization/decomposition. To achieve this, an approximate 0.25-0.28 µm 

film of IL/MIL was immobilized on the inner wall of a fused silica capillary.36 The IL/MIL 

coated capillary was then heated slowly in a GC oven and an ultra-sensitive flame ionization 

detector (FID) was used to detect any volatilization/decomposition of the IL/MIL. Figure 2.3 

shows the thermal stability diagram of each MIL as the temperature of the MIL within the 

capillary column is steadily increased. The reference column containing the [P66614
+][Cl-] IL 

produced the lowest thermal decomposition indicating that the presence of the metal anion 

complex limits the thermal stability of the MILs. The cobalt-based MIL showed the lowest 

thermal stability, with the onset of decomposition starting at approximately 130 oC and a sharp 

increase in the rate of decomposition occurring around 200 oC. The manganese-based MIL 

exhibited a similar profile with its degradation starting approximately 25 oC higher than the 

cobalt-based MIL. Conversely, the neodymium-based MIL showed the highest thermal 

stability out of all the MILs tested with slight and gradual degradation beginning around 225 

oC. Gadolinium, dysprosium, and nickel-based MILs all exhibited similar thermal stabilities 

with more rapid decomposition of the MIL occurring above 215 oC. 2.3.5 Magnetic 

Susceptibility 

MILs possess paramagnetic behavior that provides them distinct advantages over 

traditional ILs by allowing them to be easily removed or separated from an immiscible phase 

through the application of an external magnetic field. A handheld 1/16” × 1” neodymium-

based rod magnet with a surface field of 6597 Gauss is sufficiently strong to collect small 
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droplets of MIL dispersed in aqueous media. A video demonstrating the MILs ability to be 

manipulated by an external magnetic field can be seen in the supplementary information. 

 

 
Figure 2.3. Thermal stability diagram constructed by coating a thin layer of MIL on the wall 

of fused silica capillary followed by heating under a constant flow of helium and detecting any 

volatilization/decomposition products using an ultra-sensitive flame ionization detector. A 

magnified inset from 200 to 250 oC is shown at the top left for clarity purposes. (A) 

[P66614
+][Co(II)(hfacac)3

-]; (B) [P66614
+][Mn(II)(hfacac)3

-]; (C) [P66614
+][Gd(III)(hfacac)4

-]; (D) 

[P66614
+][Dy(III)(hfacac)4

-]; (E) [P66614
+][Ni(II)(hfacac)3

-] (F) [P66614
+][Nd(III)(hfacac)4

-]; (G) 

[P66614
+][Cl-]. 

 

Octahedral complexes of Co(II), Mn(II), and Ni(II) all exhibit paramagnetism at room 

temperature.30-32 Likewise, the rare earth metals Dy(III), Gd(III), and Nd(III) with eight 

coordinating species have also shown paramagnetism at ambient temperatures.33,34 Exposure 

to a magnetic field results in spin alignment of unpaired electrons in the 3d orbital for the 

transition metal MILs and the 4f orbital for rare earth MILs. Removal of the magnetic field 

results in random spin orientation due to thermal motion, which creates a loss of magnetization. 
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Most paramagnetic materials exhibit an inverse relationship between magnetic susceptibility 

and temperature as defined by the Curie-Weiss law. 

The µeff values for each MIL were determined using a Quantum Design MPMS SQUID 

magnetometer following procedures similar to those previously reported.35 Figure 2.4(a) shows 

the temperature dependence of magnetization for the [P66614
+][Co(II)(hfacac)3

-] MIL. Figure 

2.4(b) shows a plot representing the linear portion of the reciprocal susceptibility versus 

temperature diagram for the octahedrally coordinated cobalt MIL. The calculated µeff for the  

[P66614
+][Co(II)(hfacac)3

-] MIL was 4.3 µB, which agrees with previously reported literature 

values for high spin state Co(II) complexes.30,32 The nickel-based MIL exhibits a µeff of 2.8 µB 

at lower temperatures, also in agreement with literature values, but displays an anomaly in the 

temperature versus reciprocal mass susceptibility plot. This is presumably due to a phase 

transition of the MIL from a solid to liquid at approximately 150 K.30 The octahedrally 

coordinated [P66614
+][Mn(II)(hfacac)3

-] possesses a high-spin d5 manganese(II) metal center 

and exhibits a µeff of 5.8 µB at lower temperatures which agrees with literature reports, but is 

slightly lower (5.5 µB) at higher temperatures.31,32 Plots for nickel and manganese-based MILs 

are lower (5.5 µB) at higher temperatures.31,32 Plots for nickel and manganese-based MILs are 

represented by Figures A1 and A2 found in the supplemental information. 

MILs exhibiting higher magnetic susceptibility were achieved by chelating rare earth 

gadolinium(III) and dysprosium(III) ions possessing high magnetic moments into the anion 

structure. Figure 2.5(a) shows the temperature dependence of magnetization for 

[P66614
+][Dy(III)(hfacac)4

-]. The plot of reciprocal susceptibility versus temperature is 

illustrated in Figure 2.5(b) and shows good linearity. Plots of reciprocal susceptibility versus 
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temperature for [P66614
+][Gd(III)(hfacac)4

-] and [P66614
+][Nd(III)(hfacac)4

-] also show good 

linearity at temperatures up to 250 K as illustrated in Figures A3 and A4. 

 
Figure 2.4. (a) Magnetization of the the [P66614

+][Co(II)(hfacac)3
-] MIL measured as a function 

of temperature in a 20000 Oe applied magnetic field (b) Curie-Weiss fit of the linear portion 

of the reciprocal susceptibility. 

 

The µeff of the dysprosium, gadolinium, and neodymium-based MILs were 9.7 µB, 7.7 µB, and 

2.8 µB, respectively, which are in accordance with previously reported eight coordinate 

dysprosium, gadolinium, and neodymium complexes.33,34 When collecting fine droplets of 

dispersed dysprosium and gadolinium-based MILs, they can be observed to coalesce onto a 

rod magnet more easily compared to MILs with lower µeff, including the neodymium and 

nickel-based MILs. However, all MILs synthesized in this study respond sufficiently to a 

handheld rod magnet allowing for their removal from aqueous solution. 
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Figure 2.5. (a) Magnetization of the [P66614

+][Dy(III)(hfacac)4
-] MIL measured as a function 

of temperature in a 20000 Oe applied magnetic field (b) Curie-Weiss fit of the linear portion 

of the reciprocal susceptibility. 

 

 

2.4 Conclusions 

In this study, transition and rare earth metal-based MILs were successfully prepared in a 

two-step synthesis. Pairing of the [P66614
+] cation and hexafluoracetylacetonate chelated metal 

anions produced extremely hydrophobic MILs that were insoluble in aqueous solution at 0.01% 

(v/v). Furthermore, these MILs were miscible in a variety of polar and non-polar organic 

solvents. The neat hydrophobic MILs exhibited low viscosities ranging from 276.5- 927.9 cP 

at 23.7 oC. Moreover, increased magnetic susceptibility was achieved through the addition of 

high spin rare earth dysprosium and gadolinium ions into the anion structure yielding MILs 

with magnetic susceptibilities of 9.7 and 7.7 µB, respectively. Overall these MILs possess 

unique characteristics that can have great potential uses in various chemical applications such 

as extraction solvents in LLE, liquid electrochromic materials (Co-based MILs), and novel 

reaction media for organic synthesis.  
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CHAPTER 3 

RAPID ANALYSIS OF ULTRAVIOLET FILTERS USING IONIC LIQUID-BASED 

IN SITU DISPERSIVE LIQUID-LIQUID MICROEXTRACTION COUPLED TO 

HEADSPACE DESORPTION GAS CHROMATOGRAPHHY-MASS 

SPECTROMETRY 

 

Stephen A. Pierson, María J. Trujillo-Rodríguez, Jared L. Anderson* 

 

Abstract 

An ionic liquid (IL)-based in situ dispersive liquid-liquid microextraction (DLLME) 

method coupled to headspace desorption gas chromatography-mass spectrometry (HS-GC-MS) 

was developed for the rapid analysis of ultraviolet (UV) filters. The chemical structures of five 

ILs were specifically designed to incorporate various functional groups for favorable extraction 

of the target analytes. Extraction parameters including IL mass, molar ratio of IL to metathesis 

reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. 

The effect of the headspace temperature and volume during the headspace desorption step was 

also evaluated to increase the sensitivity of the method. The optimized in situ DLLME 

procedure is fast as it only requires ~7–10 min per extraction and allows for multiple 

extractions to be performed simultaneously. In addition, the method exhibited high precision, 

good linearity, and low limits of detection for the six UV filters in aqueous samples. The 

developed method was also applied to both pool and lake water samples attaining acceptable 

relative recovery values.  
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3.1 Introduction 

Skin cancer has become an increasing threat with the ongoing depletion of the Earth’s 

ozone layer resulting in more ultraviolet (UV) radiation making it down to the earth’s surface 

[1]. To combat this, UV filters have been used for decades as ingredients within a variety of 

products such as sunscreens, makeup, and other topical creams. UV filters are organic 

molecules that contain various functional groups that can absorb harmful UV radiation from 

the sun, thereby protecting the dermal layer of skin from being harmed by high energy UV-B 

and UV-C light [2, 3]. UV filters are also employed to protect plastics, paints, and other 

products from degradation due to UV exposure [4]. 

With the widespread use of UV filters in both plastics and topical protection, they can 

accumulate in different aquatic environments, especially swimming pools, lakes, and oceans 

[1, 2, 5]. Despite their benefits, recent reports have shown that UV filters can also have some 

negative effects on human and environmental health [5, 6]. Environmental agencies within the 

European Union (EU) have begun to regulate the presence of one of these compounds, 2-

ethylhexyl methoxycinnamate (EMC), with other similar compounds likely to be regulated in 

the near future [7]. Therefore, the development of methods suitable for the extraction and 

detection of UV filters at low concentration levels is necessary. 

High-performance liquid chromatography (HPLC) and gas chromatography (GC) coupled 

with mass spectrometry (MS) have been employed in a number of methods to analyze these 

analytes from real samples [3, 5, 7-14]. A variety of sample preparation techniques have been 

exploited prior to chromatographic separation for the extraction and preconcentration of these 

analytes. Traditionally, solid-phase extraction (SPE) has been the analytical method of choice 

for the extraction of EMC [2]. However, SPE techniques require large volumes of sample and 
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organic solvents. In recent years, there has been a push towards the development of automated 

sample preparation methods that require only small amounts of solvents and sample [15]. 

Fitting these criteria, solid-phase microextraction (SPME) and stir bar sorptive-dispersion 

microextraction (SBSDµE) methods have been used for the extraction of UV filters [2, 4, 10, 

16-18]. However, these techniques often require long extraction times and cleaning steps after 

extraction that can lead to lower throughput analysis. Liquid phase microextraction (LPME) 

has also been utilized for the extraction of UV filters from aqueous samples. LPME techniques 

include dispersive liquid-liquid microextraction (DLLME) [3, 11, 19], single drop 

microextraction (SDME) [1, 20] and hollow-fiber liquid phase microextraction (HF-LPME) 

[21].  

Ionic liquids (ILs) have been explored as alternative solvents in LPME, as some classes of 

ILs may reduce toxic waste generation and contribute to an environmentally-friendly 

methodology [15, 22]. ILs are molten salts that possess melting points at or below 100 oC, 

tunable viscosities, negligible vapor pressure, and high thermal stability [23]. ILs have been 

utilized in SDME and HF-LPME for the determination of UV filters. However, these 

techniques generally require long extraction times. In an effort to increase sample throughput 

while achieving modest enrichment factors, IL-based DLLME techniques have gained 

popularity. In-situ IL-DLLME is a technique in which a hydrophilic IL is added to the aqueous 

sample, followed by the addition of a metathesis reagent [24, 25]. This mixture facilitates the 

in-situ formation of a hydrophobic IL in which analytes are preconcentrated. The in-situ 

approach forms large amounts of hydrophobic IL microdroplets which greatly increase the 

surface area of the extraction phase. The enhanced surface area achieved by in-situ DLLME 

has been shown to be more effective at extracting analytes compared to traditional DLLME 
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approaches [24-26]. Furthermore, the chemical structures of ILs can be tailored with different 

functional groups in order to facilitate different interactions with the analytes and achieve high 

extraction efficiency. The low vapor pressure of ILs allows them to be heated at high 

temperatures with little to no background interference, a property that can be exploited for 

headspace (HS)-GC-MS applications [17, 27, 28]. For the extraction of semi-volatile analytes 

such as UV filters, higher temperatures can result in increased sensitivity in HS-GS-MS 

analyses [27, 29-31]. 

In this study, five ILs have been specifically designed with different functional groups i.e., 

(long alkyl chains, aromatic moieties, and hydroxyl groups) to promote π-π, hydrophobic, and 

hydrogen bonding interactions with 8 UV filters. Rapid preconcentration of UV filters was 

achieved using in-situ DLLME followed by analysis using HS-GC-MS. Extraction parameters 

including HS temperature and sampling volume, droplet size after in situ DLLME, total 

extraction volume, molar ratio of IL to metathesis reagent, ionic strength, pH and vortex time 

during the in situ DLLME were all optimized in this study. 

 

3.2 Experimental 

3.2.1 Materials 

The analytes 2-ethylhexyl salicylate (ES; 99%), benzyl salicylate (BS; 99%), homosalate 

(HS; pharmaceutical secondary standard), oxybenzone (BP3; pharmaceutical secondary 

standard), menthyl anthranilate (MA; 98%), ethyl 2-cyano-3, 3 diphenyl-acrylate (ETO; 98%), 

2-ethylhexyl 4-(dimethylamino)benzoate (EPP; 98%), and 2-ethylhexyl 4-methoxycinnamate 

(EMC; 98%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Individual standard 
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stock solutions were prepared by dissolving each analyte in acetone at a concentration of 2 mg 

mL-1 . 

The reagents 1-methylimidazole (99%), 1-benzylimidazole (99%), 1-bromobutane (99%), 

2-bromoethanol (95%), 1-bromooctane (99%), 6-chlorohexanol (96%), acetone (99.5%), 

chloroform (99.5%), 2-propanol (99.5%), and acetonitrile (99.5%) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Natural polypropylene conical centrifuge tubes (5 mL) 

were purchased from Sigma-Aldrich. Round bottom polystyrene centrifuge tubes (14 mL) and 

3 mm diameter economical solid glass beads (Walter Stern) were purchased from Fisher 

Scientific (Fair Lawn, NJ, USA). Lithium bis[(trifluoromethyl)sulfonyl]imide (LiNTf2) was 

purchased from SynQuest Labs, Inc. (Alachua, FL, USA). Ultrapure water (18.2 M cm) was 

obtained from a Milli-Q water purification system (Bedford, MA, USA). Headspace vials (10 

mL) and crimped silver aluminum caps with PTFE/silicone septum were purchased from 

Agilent Technologies (Santa Clara, CA, USA). 

3.2.2 Synthesis of Ionic Liquids 

The following five ILs were designed and synthesized in this study: 1-butyl-3-

methylimidazolium bromide ([BMIM+][Br-]), 1-octyl-3-methylimidazolium bromide 

([OMIM+][Br-]), 1-benzyl-3-butylimidazolium bromide ([BeBIM+][Br-]), 1-(6-

hydroxyhexyl)-3-methylimidazolium chloride ([HeOHMIM+][Cl-]), and 1-benzyl-3-(2-

hydroxyethyl)imidazolium bromide ([BeEOHIM+][Br-]). The structures of each IL are shown 

in Table 3.1. All ILs were synthesized according to previously reported literature procedures 

[24, 27 ,32] and were characterized by 1H NMR. 1H NMR spectra for all ILs are shown in Fig. 

B1-B5 (Appendix B) and were recorded in deuterated chloroform or dimethyl sulfoxide using 
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a Bruker DRX 500 MHz nuclear magnetic resonance (NMR) spectrometer (Billerica MA, 

USA). 

3.2.3 Instrumentation 

An Agilent 7890B gas chromatograph (Santa Clara, CA, USA) equipped with a 5977A 

mass spectrometer and an Agilent 7697A headspace sampler was used for the HS-GC-MS 

analysis of the 8 UV filters. The HS sampler was operated in fill mode (flow to pressure, 50 

psi) with the HS oven operating at an optimized temperature of 200 °C. The sample loop and 

transfer line were maintained at 210 °C and 220 °C, respectively. An equilibration time of 10 

min with no agitation was used for all experiments. The GC injector was maintained at 250 °C 

with a 5:1 split ratio. Separations were achieved using an HP-5MS UI capillary column (30 m 

× 250 μm I.D., 0.25 μm film thickness) obtained from Agilent Technologies. Helium was used 

as the carrier gas at constant flow of 1 mL·min−1. The temperature program used was as follows: 

initial temperature was set at 100 °C (held for 1 min) followed by a ramp from 100 °C to 290 °C 

at 25 °C min-1 (held for 5 min). The transfer line was kept at 250 ºC. The MS was operated in 

electron ionization mode (EI) at 70 eV, using 230 ºC and 150 ºC as source and quadrupole 

temperatures, respectively. Data were initially acquired in SCAN mode to determine the 

retention time of each of the 8 analytes. For subsequent analyses, the single ion monitoring 

(SIM) acquisition mode was used for detection/quantitation. Retention times, target and 

qualifier ions, and the segment program used for SIM mode are shown in Table B1. 

3.2.4 In-situ dispersive liquid-liquid microextraction procedure 

A working solution of UV filters was prepared at a concentration of 200 μg L-1 for ES, BS, 

HS, BP3, MA, EMC and 1 mg L-1 for ETO and EPP. To conduct a comparison of extraction 

efficiencies using the different ILs, a 5 mL conical centrifuge tube was filled with 4.2-4.6 mL 
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of the UV filter working solution (depending on the IL). Next, an aqueous solution containing 

a specific mass of halide-based IL was added to the solution (see Table B2). To ensure a fair 

comparison, the amount of each IL was calculated to yield approximately 25 µL of the [NTf2
−]-

based IL after the metathesis reaction. Table B2 shows the amount of each IL added to the 

aqueous analyte solution in order to produce 25 µL of extraction phase. The IL was completely 

dissolved into the sample solution by vigorous shaking for 10 s. An aqueous solution of LiNTf2 

(0.4 g mL−1) was then added to achieve a 1:1 molar ratio of IL to LiNTf2. The tube was then 

vortexed for 10 s and centrifuged for 5 min at 4500 rpm. A 20 μL aliquot of the hydrophobic 

IL solvent was then withdrawn via micropipette and transferred to a 10 mL headspace vial for 

HS-GC analysis. 

To observe the effect of headspace volume on extraction efficiency, 9.4 mL of ultrapure 

water containing 200 μg L-1 of ES, BS, HS, BP3, MA, EMC and 1 mg L-1 of ETO, EPP was 

added to a 14 mL round bottom centrifuge tube. Next, an aqueous solution containing 80 mg 

of [BMIM+][Br-] IL was added to the solution. The IL was completely dissolved into the 

sample solution by vigorous shaking for 10 s. An aqueous solution of LiNTf2 (0.4 g mL−1) was 

then added to achieve a 1:1 molar ratio of IL to LiNTf2. The sample solution immediately 

became cloudy due to the metathesis reaction and the formation of the hydrophobic 

[BMIM+][NTf2
-] IL. The tube was then vortexed for 30 s and centrifuged for 5 min at 4500 

rpm. Approximately 25 μL of the hydrophobic IL containing preconcentrated UV filters was 

formed at the bottom of the centrifuge tube. A 20 μL aliquot of [BMIM+][NTf2
-] IL was then 

withdrawn via micropipette and transferred to a 10 mL headspace vial containing 12.5 g of 

glass beads (3 mm diameter) and a smaller flat bottom 2 mL Agilent Technologies HPLC 
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autosampler vial with the neck removed for HS-GC-MS analysis at 200 °C [27]. A graphical 

representation of the procedure is shown in Fig. B6. 

 

3.3 Results and Discussion 

3.3.1 Optimization of the HS-GC-MS step 

The aim of this study is to exploit the tunability of ILs to provide a means of 

preconcentrating analytes into the IL phase during the in situ DLLME process while also taking 

advantage of their non-volatility in direct HS-GC-MS analysis. The HS sampler unit in the HS-

GC-MS system operates heating and pressurization of the headspace vial allowing for 

volatilization of the vial components. The volatile components are then directly transferred to 

the GC inlet, followed by separation and detection by GC-MS. Thereby, the key point of the 

HS-GC-MS is the optimization of the HS step. In this particular application, the optimized 

parameters were the HS oven temperature and the HS sampling volume. The remaining 

conditions of the HS-GC-MS system are detailed in Section 2.3. 

3.3.2 Effect of the headspace temperature 

Temperature plays a pivotal role in the response of analytes in HS sampling. In theory, 

increasing the temperature can increase the amount of analyte that partitions into the headspace, 

but can also lead to an increase in chromatographic background if volatilization of the solvent 

occurs [27]. The effect of the HS oven temperature on the response of 8 UV filters was 

examined by incubating 20 µL of the [BMIM+][NTf2
-] IL after in situ DLLME at different 

headspace oven temperatures for 10 min. Fig. 3.1(A) shows that the response of analytes was 

greatly enhanced as the HS oven temperature was increased from 150 °C to 200 °C. Due to the 
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semi-volatility of the analytes, increased temperature was observed to influence their 

desorption into the HS resulting in an increased analyte response. 

It is important to point out that no significant chromatographic background was observed in 

the temperature range studied. Temperatures higher than 200 ºC revealed the presence of 

background peaks due to the partial degradation/volatilization of the IL that overlapped with 

analyte peaks. Thus, to avoid interference with analyte peaks, a headspace oven temperature 

of 200 °C was used for all remaining experiments. The HS sampling volume is another 

important factor in HS-GC-MS. Previous studies reported that decreasing the volume of the 

HS system may result in an increased response of analytes [27]. The smallest commercially-

available HS sampling vial has a capacity of 10 mL. To produce a smaller headspace using 

vials that are compatible with the headspace system, a modified HS sampling vial was 

developed following the procedure described by Zhang et al. [27]. 3.3.3 Influence of the 

headspace sampling volume 

Briefly, 10 mL HS sampling vials were filled with glass beads, and a glass insert with a 

flat bottom was placed inside the vial resulting in a reduced volume of 4.2 mL (see Fig. B2). 

Fig 3.1(B) shows that as the HS volume was decreased from the standard 10 mL HS vial to the 

adjusted 4.2 mL HS vial, the extraction efficiency of all analytes increased by 15-40%. Due to 

the increased response of analytes, a 4.2 mL HS volume was selected as optimum in this study. 

3.3.4 Design of ionic liquids for in situ IL-DLLME 

UV filters are known to contain many functional groups including aromatic, alcohol, 

ketone, ester, amine, and aliphatic moieties that may influence their partitioning behavior from 

the aqueous solution into the extraction phase. Five different imidazolium-based ILs, shown 

in Table 3.1, were designed to examine various intermolecular interactions with the analytes 
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and their effect on extraction efficiency. The [BMIM+][Br-] IL  has been utilized as an 

extraction solvent in other in situ DLLME studies [24, 27] and was used as a reference IL.  

 

  

 

Figure 3.1. (A) Effect of headspace incubation temperature on extraction efficiencies 

(expressed in peak area) of UV filters from 5 mL of ultrapure water at ( ) 150 °C, ( )180 °C, 

and ( )200 °C, and (B) Effect of headspace volume on the extraction efficiency (expressed 

in peak area) of UV filters from 5 mL of ultrapure water. ( ) 4.2 mL modified headspace vial, 

( ) 10 mL headspace vial. [BMIM+][Br-] volume: 20 µL; headspace incubation temperature: 

200 °C; IL:NTf2 = 1:1; Concentration of analytes ETO and EPP: 1 mg L-1; Concentration of 

the remaining analytes: 200 µg L-1; Vortex time: 10 s. 
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To examine hydrophobic interactions between the IL solvent and the UV filters, an octyl 

moiety was incorporated as a substituent on the imidazolium cation structure to produce the 

[OMIM+][Br-] IL. To investigate hydrogen bonding interactions between the IL and UV filters, 

the butyl chain of [BMIM+] [Br-] was replaced with a hexanol moiety to produce the 

[HeOHMIM+][Cl-] IL. The methyl group substituent within the [BMIM+][Br-] IL was replaced 

with a benzyl moiety ([BeBIM+][Br-]) to examine the importance of π-π interactions on 

extraction efficiency. Lastly, an IL containing both benzyl and hydroxyl groups was 

synthesized ([BeEOHIM+][Br-]) to examine the effect of combined interactions on the 

extraction efficiency of UV filters from an aqueous sample. 

Table 3.1. Chemical structures of ILs as well as the volumes of IL and LiNTf2 solution applied 

for in situ DLLME analysis of UV filters from 10 mL of aqueous solution. The employed 

volumes were used to produce approximately 25 µL of [NTf2
-]-based IL.  

 

Structure Abbreviation 

Volume of 

the IL 

solution 

added (μL)a 

Volume of the 

LiNTf2 

solution added 

(μL)b 

 
[BMIM+][Br-] 400 

265 c 

400 d 

 
[OMIM+][Br-] 180 

95 c 

145 d 

 

[BeBIM+][Br-] 200 
100 c 

150 d 

 

[BeEOHIM+][Br-] 560 
285 c 

430 d 

 

[HeOHMIM+][Cl-

] 
770 

505c 

760d 
a The IL solution was prepared by dissolving 2 g of IL in 10 mL of ultrapure water. 
b The LiNTf2 solution was prepared by dissolving 4 g of LiNTf2 in 10 mL of ultrapure 

water. 
c Molar ratio of IL:LiNTf2=1:1. 
d Molar ratio of IL:LiNTf2=1:1.5. 
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The extraction efficiencies obtained in ultrapure water were compared for the five designed 

ILs. Given the different solubility of the [NTf2
-] form of the ILs in the aqueous sample, adding 

equal mass of each halide-based IL resulted in different amounts of sedimented phase after in 

situ DLLME. To ensure a fair comparison of each IL, the amount of each IL used was estimated 

to yield approximately 25 µL of the [NTf2
-]-based IL after DLLME, as shown in Table 3.1. To 

avoid the aqueous solution being transferred to the HS vial, only 20 µL of the sedimented IL 

phase was pipetted for HS-GC-MS analysis. Fig. 3.2 shows a comparison of extraction 

efficiency for all ILs used in this study. The [BMIM+][Br-] and [BeEOHIM+][Br-] ILs exhibited 

the highest extraction efficiencies for most of the UV filters. It can be noted that ETO and EPP 

were not significantly extracted using any of the ILs as extraction solvents, even at relatively 

high concentrations (milligram per liter level). If the chemical structures of EPP and ES are 

compared, EPP is an aminobenzoate and ES a salicylate derivative. Thus, the main difference 

between these two compounds is that EPP possesses a tertiary amine in its chemical structure 

while ES has a hydroxyl functional group. However, only ES is extracted at low concentration 

levels using in situ DLLME, which indicates that the designed ILs appear to be more beneficial 

in the extraction of analytes possessing hydroxyl functional groups. 
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Figure 3.2. Extraction comparison for UV filters extracted from 5 mL of ultrapure water 

using 20 µL of ( ) [BMIM+][Br-], ( ) [OMIM+][Br-], ( ) [BeBIM+][Br-], ( ) 

[HeOHMIM+][Cl-], ( ) [BeEOHIM+][Br-] ILs. Headspace incubation temperature: 200 °C; 

IL:NTf2 = 1:1; Concentration of analytes ETO and EPP: 1 mg L-1; Concentration of the 

remaining analytes: 200 µg L-1; Vortex time: 10 s 

 

3.3.5 Optimization of in situ DLLME 

After testing the suitability of different ILs for the extraction of this group of UV filters, 

the main parameters that influence the in situ DLLME procedure were optimized using a 

factor-by-factor approach. With both [BMIM+][NTf2
-] and [BeEOHIM+][NTf2

-] exhibiting 

high extraction efficiency for most of the UV filters, the [BMIM+][Br-] IL was chosen for 

optimization for two reasons: (1) less IL mass was needed for extraction, and (2) [BMIM+][Br-] 

requires less work up during synthesis. The optimized parameters included the amount of 

sedimented IL phase after extraction, total extraction volume, IL to ion-exchange reagent ratio, 

ionic strength, pH, and vortex time. The criteria for the optimization was to achieve the highest 

extraction efficiencies for the UV filters. Thereby, conditions that resulted in the highest peak 

areas were used for subsequent extractions. 
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3.3.6 Effect of the amount of sedimented phase after extraction, 

The amount of sedimented phase after in situ DLLME influences the extraction as it is 

directly related to the preconcentration of the method. The amount of the sedimented phase is 

proportional to the initial volume of halide-based IL used in the extraction. Thus, this volume 

was varied to generate volumes of sedimented [BMIM+][NTf2
-] IL ranging from 15-60 µL. Fig. 

3.3 shows that similar extraction efficiencies of UV filters were obtained when 15-25 µL of 

hydrophobic IL was used. However, further increasing the IL volume to 40 µL and 60 µL 

resulted in lower extraction efficiencies of the target analytes. Decreases in extraction 

efficiencies with large amounts of IL as extraction solvent have also been reported in previous 

studies [27]. Thus, the amount of halide-based IL to obtain a sedimented IL volume of 25 µL 

was used for subsequent extractions. 

 
Figure 3.3. Effect of the amount of sedimented IL phase after extraction (expressed in peak 

area) of UV filters from 10 mL of ultrapure water. [BMIM+][Br-] volume: ( ) 15 µL, ( ) 20 

µL, ( ) 25 µL, ( ) 40 µL, ( ) 60 µL. Headspace incubation temperature: 200 °C; IL:NTf2 = 

1:1; Concentration of analytes ETO and EPP: 1 mg L-1; Concentration of the remaining 

analytes: 200 µg L-1; Vortex time: 10 s. 
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3.3.7 Influence of the initial sample volume 

Total extraction volume can play a significant role in the total amount of analyte in the 

extraction solution. However, for in situ DLLME, increasing the total volume can influence 

the amount of sedimented IL phase that can be collected at the end of the procedure, which can 

also impact extraction efficiency. For a fair comparison, the amount of IL added to each of the 

extractions yielded approximately 25 µL of hydrophobic IL. Aqueous solution volumes of 2.5 

mL, 5 mL, and 10 mL were examined to determine their effect on extraction efficiencies. Fig. 

B7 shows that the volume of the extraction significantly influences extraction efficiency for 

all analytes in the solution. Increasing the aqueous solution volume lead to a higher extraction 

efficiency as the maximum preconcentration factor increased from 100 (2.5 mL / 0.025 mL) 

to 400 (10 mL / 0.025 mL). However, it is important to mention that a higher mass of IL is 

needed to produce the desired 25 µL of sedimented IL at these conditions because of the partial 

solubility of the IL in water. Due to the greatly enhanced extraction efficiencies at higher 

volumes, total sample volumes of 10 mL were used for further experiments. 

3.3.8 Effect of the IL to metathesis reagent ratio 

Two different molar ratios of IL to LiNTf2 (1:1 and 1:1.5) were studied to examine the 

effect of the ion exchange reagent on the extraction efficiency of UV filters. As shown in Fig. 

3.4, increasing the molar ratio from 1:1 to 1:1.5 led to a significant decrease in extraction 

efficiency for all analytes. This result is in agreement with other reported in situ DLLME 

studies [24, 27]. It was noted for extractions using molar ratios of 1:1.5 that the sedimented IL 

phase was distinctly cloudy in comparison to the sedimented IL phase formed from the 1:1 

molar ratio. Due to the ionic nature of both the metathesis reagent and the IL, a possible 

explanation of this phenomenon is that the excess metathesis reagent may saturate the IL 
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resulting in less preconcentration of the analyte. A 1:1 (IL to LiNTf2) molar ratio was used for 

subsequent extractions. 

 
Figure 3.4.  Effect of molar ratio of the [BMIM+][Br-] IL and LiNTf2 on the extraction 

efficiency (expressed in peak area) of UV filters from 5 total sample volume. ( ) IL:NTf2 = 

1:1, ( ) IL:NTf2 = 1:5. [BMIM+][Br-] volume: 20 µL; headspace incubation temperature: 200 

°C; Concentration of analytes ETO and EPP: 1 mg L-1; Concentration of the remaining 

analytes: 200 µg L-1; Vortex time: 10 s. 

 

3.3.9 Influence of ionic strength and pH 

The addition of a kosmotropic salt is performed in many microextraction procedures to 

decrease the solubility of the analytes in the aqueous phase and thus increase their partitioning 

into the organic phase, thereby improving extraction efficiency of the analyte. To determine 

the effect of salt on the analyte extraction efficiency, NaCl was added to the aqueous solution 

at 3.5% and 5% (w/v). Fig. B8 shows that as the concentration of NaCl is increased, the 

extraction efficiency is slightly reduced for all of the analytes. With an increase in salt 

concentration, it was observed that the sedimented IL phase after DLLME appeared slightly 

cloudy. 

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

ES BS HS BP3(x10) MA ETO(x10) EPP(x10) EMC

P
e

ak
 A

re
a



www.manaraa.com

46 
 

Previous DLLME methods reported mildly acidic pH having a slightly enhanced effect on 

extraction efficiency of UV filters containing phenolic moieties [28]. In order to examine the 

effect of pH on the extraction efficiencies of target analytes using the developed in situ 

DLLME method, extractions were performed at pH 4, 6, 8, and 10. The aqueous solution pH 

was adjusted to the appropriate value using HCl or NaOH. Fig. B9 shows that no significant 

changes in extraction efficiencies were observed for all analytes over the range of pH 

conditions tested, with the analyte ES showing a slight increase in its extraction efficiency at 

pH 4. Given these results, all subsequent extractions were performed without any pH 

adjustment. 

3.3.10 Influence of vortex time 

Agitation of the extraction solution via vortex has been shown to have a substantial impact on 

extraction efficiency in DLLME methods [28]. In order to ensure proper mixing of analytes 

and the hydrophobic IL phase, vortex times of 10 s, 30 s, and 60 s were examined. An increase 

in extraction for all analytes was observed as the vortex time was increased from 10 s to 30 s, 

as shown in Fig. 3.5. Further increasing the vortex time to 60 s resulted in no significant 

increase in extraction efficiencies. In addition, a vortex time of 60 s resulted in poorer 

reproducibility compared to those at 10 s and 30 s. Therefore, vortex time of 30 s was used for 

all subsequent experiments. 

3.3.11 Analytical performance 

The analytical performance of the two best performing ILs, namely, [BMIM+][Br-] and 

[BeEOHIM+][Br-], was evaluated for the extraction of the target UV filters. Tables 3.2 and 3.3 

show the figures of merit based on five- to seven-point calibration curves for [BMIM+][Br-] 

and [BeEOHIM+][Br-], respectively.  
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Figure 3.5.  Effect of vortex time on extraction efficiencies (expressed in peak area) of UV 

filters from 10 mL of ultrapure water. ( ) 10 s vortex, ( ) 30 s vortex, and ( ) 60 s vortex. 

[BMIM+][Br-] volume: 20 µL; IL:NTf2 = 1:1; Headspace incubation temperature: 200 °C; 

Concentration of analytes ETO and EPP: 1 mg L-1; Concentration of the remaining analytes: 

200 µg L-1 

 

Similar linear ranges were obtained for the two ILs with most of the analytes exhibiting linear 

ranges from 50 to 500 µg L-1. The analytes ETO and EPP were omitted due to poor extraction 

below the milligram per liter concentration level. All analytes showed good linearity with 

coefficient of determination (R2) values ranging from 0.997 to 0.999. 

 

Table 3.2. Figures of merit for IL in situ DLLME analysis of UV filters in ultrapure water 

using the [BMIM+][Br-] IL. 

Analyte 
Linear Range 

(µg L-1) 
Slope±error 

LOD (µg L-

1) 
R2 

%RRa 

Pool 

Water 

Lake 

Water 

ES 50-500 4392±203 0.50 0.998 106 108 

BS 50-500 1932±64 1.0 0.998 101 103 

HS 50-500 1602±14 1.0 0.999 117 115 

BP3 25-500 273±25 10 0.997 109 101 

MA 50-500 2324±58 1.0 0.998 101 99.7 

EMC 50-500 784±31 1.0 0.998 104 106 
a % relative recovery calculated at analyte concentration of 50 µg L-1. 
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Table 3.3. Figures of merit for IL in situ DLLME analysis of UV filters in ultrapure water 

using the [BeEOHIM+][Br-] IL. 

Analyte 
Linear Range 

(µg L-1) 
Slope±error LOD (µg L-1) R2 

%RRa 

Pool 

Water 

Lake 

Water 

ES 50-500 4059±198 0.50 0.998 109 110 

BS 50-500 1258±52 1.0 0.998 102 104 

HS 50-500 1630±13 0.50 0.999 117 119 

BP3 25-500 319±10 5.0 0.997 102 108 

MA 50-250 1311±42 1.0 0.998 101 98.1 

EMC 50-500 728±55 1.0 0.998 99.8 107 
a % relative recovery calculated at analyte concentration of 50 µg L-1. 

 

The limit of detection (LOD) for each analyte was determined by decreasing the spiked 

analyte concentration until a signal to noise (S/N) ratio of 3:1 was attained. The LODs for UV 

filters using the [BMIM+] [Br-] and [BeEOHIM+][Br-] ILs ranged from 0.5 to 10 µg L-1 and 

0.5 to 5 µg L-1, respectively. The precision of the method was evaluated by the estimating the 

percent relative standard deviation (%RSD) obtained after intra-day experiments at a spiked 

level of 50 µg L-1. The RSD values ranged between 3.9% and 13.6%. 

3.3.12 Analysis of real samples 

In order to further examine the performance of the developed IL in-situ DLLME method, 

extractions were performed from two real water samples, including pool water and lake water. 

Pool water was collected and used without further treatment. Lake water was subjected to 

filtration with a 0.45 µm filter to remove any particulates from the sample. For the 

[BMIM+][Br-] IL, no analytes were detected in any of the studied samples. Similarly, the 

[BeEOHIM+][Br-] IL showed no observable peaks in the non-spiked real samples. Tables 3.2 

and 3.3 show the relative recovery (RR) values of the 6 UV filters after extraction with the 

[BMIM+][Br-] and the [BeEOHIM+][Br-] ILs, respectively. All RR values were obtained at the 

50 µg L-1 level from pool and lake water samples. For the [BMIM+][Br-] IL, RR values of UV 
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filters in pool water ranged from 101% to 117%, while they ranged from 99.7% to 115% when 

lake water was used as a sample matrix. The [BeEOHIM+][Br-] IL resulted in RR values 

ranging from 99.8% to 117% in pool water and from 98.1% to 119% for lake water. The RSD 

obtained for these experiments was lower than 14.2% in all cases. These results suggest that 

the matrix effects were relatively similar for pool and lake water when both ILs were used as 

extraction solvents. The obtained relative recovery values demonstrate the robustness of the 

developed in-situ DLLME method for the extraction of UV filters using ionic liquids. 

A comparison of the developed method to other microextraction techniques that have been 

reported for the determination of UV filters is shown in Table B3. In comparison with other 

DLLME methods, this approach exploits the use of  (ILs) for in situ DLLME. To the best of 

our knowledge, this is the first time that this in situ DLLME procedure has been applied 

towards the extraction of UV filters. Furthermore, this method provides an alternative to other 

techniques such as SPME, which generally require long sampling times. Compared to both 

SPME and SBSDµE methods, the proposed in situ DLLME method is between ~3–7 times 

faster. Furthermore, this method allows for many samples to be prepared at the same time (as 

many as the centrifuge allows), permitting rapid high throughput screening of UV filters in 

real samples while achieving similar sensitivity. In this particular application, 6 extractions 

were simultaneously performed, in ~7–10 min. In comparison, reported SPME procedures 

requires 25–75 min of extraction time per sample [2, 16]. 

 

3.4 Conclusions 

In this study, a in situ DLLME method coupled to HS-GC-MS was developed for the 

determination of UV filters using ILs as extraction solvents. Five ILs with different chemical 
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structures were employed and their selectivities toward the target UV filters were assessed. 

The highest extraction efficiencies of the target analytes were obtained using the [BMIM+][Br-] 

and [BeEOHIM+][Br-] ILs. After proper optimization, the developed methods with both ILs 

exhibited adequate precision and linearity, and LODs of six UV filters at the low microgram 

per liter level in aqueous samples. The method was successfully applied for the analysis of 

pool and lake water samples with no significant observable matrix effect. Overall, the 

developed in situ IL-based DLLME coupled with HS-GC-MS resulted in a rapid sample 

preparation technique for high throughput analysis, constituting an advantage over other 

methods such as SPME and SBSDME which require much longer extraction times. Continued 

studies focusing on further tuning of the IL structure for a highly selective determination of 

target analytes from complex environmental or biological samples are currently underway. 
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CHAPTER 4 

GENERAL CONCLUSIONS 

This thesis summarizes the synthesis of ILs and MILs for their application in 

microextraction techniques. ILs and MILs developed in these studies were specifically tailored 

to extend their applications in analytical chemistry as well as overcome the weaknesses of 

other sample preparation methods. 

Chapter 2 describes the synthesis of new class of MILs for their application in analytical 

chemistry. The synthesis of the MILs was achieved in a simple two-step process where both 

transition and rare earth metals were able to be imparted into the MIL structure. Both the cation 

and the anion of each MIL possessed features leading to their stability in aqueous environments 

even at high temperatures. Furthermore, exceptionally low viscosity was achieved in 

comparison to the existing MILs, giving a plethora of future opportunities for these MILs to 

be used in many analytical techniques.  

Chapter 3 describes the development of an in situ DLLME procedure utilizing ILs as 

extraction solvents coupled to HS-GC-MS. This method demonstrated good extraction 

capabilities from both pool and lake water samples. Overall, the in situ DLLME method takes 

much less time for the preconcentration of the target analytes compared to other reported 

methods. Furthermore, this technique allows for many samples to be prepared simultaneously 

lending itself to high throughput analysis. 
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APPENDIX A 

SUPPLEMENTAL INFORMATION ACCOMPANYING 

CHAPTER 2 

 

 

Figure A1. (a) Magnetization of the [P66614
+][Mn(II)(hfacac)3

-] MIL measured as a function of 

temperature in a 20000 Oe applied magnetic field (b) Curie-Weiss fits of both high- and low-

temperature linear regions of the reciprocal susceptibility 

 

 

Figure A2. (a) Magnetization of the [P66614
+][Ni(II)(hfacac)3

-] MIL measured as a function of 

temperature in a 20000 Oe applied magnetic field (b) Curie-Weiss fits of the linear regions of 

the reciprocal susceptibility above and below the ~150 K anomaly. 
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Figure A3. (a) Magnetization of the [P66614
+][Gd(III)(hfacac)4

-] MIL measured as a function 

of temperature in a 20000 Oe applied magnetic field (b) Curie-Weiss fit of the linear portion 

of the reciprocal susceptibility. 

 

 

 

Figure A4. (a) Magnetization of the [P66614
+][Nd(III)(hfacac)4

-] MIL measured as a function 

of temperature in a 20000 Oe applied magnetic field (b) Curie-Weiss fit of the linear portion 

of the reciprocal susceptibility. 
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Figure A5. Mass spectrum of [P66614
+] using TOF LC/MS (positive mode). 

 

 

 

Figure A6. Mass spectrum of [Co(II)(hfacac)3
-] using TOF LC/MS (negative mode). 
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Figure A7. Mass spectrum of [Mn(II)(hfacac)3
-] using TOF LC/MS (negative mode). 

 

 

 

Figure A8. Mass spectrum of [Ni(II)(hfacac)3
-] using TOF LC/MS (negative mode). 
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Figure A9. Mass spectrum of [Dy(III)(hfacac)4
-] using TOF LC/MS (negative mode). 

 

 

 

Figure A10. Mass spectrum of [Gd(III)(hfacac)4
-] using TOF LC/MS (negative mode). 
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Figure A11. Mass spectrum of [Nd(III)(hfacac)4
-] using TOF LC/MS (negative mode). 

 

 

Figure A12. [P66614
+][Mn(II)(hfacac)3

-] (left) and [P66614
+]2[MnCl4

2-] (right) before and after 

inversion for 2 seconds. 

 

  

Figure A13. From left to right: [P66614
+][Ni(II)(hfacac)3

-], [P66614
+][Co(II)(hfacac)3

-], 

[P66614
+][Mn(II)(hfacac)3

-], [P66614
+][Dy(III)(hfacac)4

-],  [P66614
+][Nd(III)(hfacac)4

-],  and 

[P66614
+][Gd(III)(hfacac)4

-] before and after inversion for 1 second. 
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APPENDIX B 

SUPPLEMENTAL INFORMATION ACCOMPANYING 

CHAPTER 3 

Table B1.  Chemical structures, retention time, quantifier and qualifier ions utilized for the 

identification and quantification of the target UV filters in the HS-GC-MS system. The 

segment program utilized in the MS during the single ion monitoring (SIM) acquisition is also 

included. 

Analyte Structure 

Retention 

time 

(min) 

Quantifier 

ion (m/z) 

Qualifier 

ion (m/z) 
Segment 

Time 

(min) 

Registered 

ions 

ES 

 

7.858 120 138 

1: ES 7.85 120. 138 

   

BS 

 

8.205 91 65 

2: BS 8.18 65, 91 

   

HS 

 

8.270 138 109 

3: HS 8.23 109, 138 

   

BP3 

 

8.896 151 77 

4: BP3 8.85 77, 151 

   

MA 

 

9.239 137 119 

5: MA 9.20 119, 137 

   

ETO 

 

9.471 232 204 

6: ETO 9.42 204, 232 

   

EPP 

 

9.827 165 148 

7: EPP 9.80 148, 165 

   

   

EMC 
 

10.00 178 161 

8: EMC 9.96 161, 178 

   

*Grey rows denote segments in the SIM acquisition program 
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Table B2. Volumes of IL and LiNTf2 solution needed to produce approximately 25 µL of 

sedimented IL for in situ DLLME analysis of UV filters from 5 mL of aqueous solution. 

IL applied for 

in situ DLLME 

Volume of the IL solution 

added (μL)a 

Volume of the LiNTf2 solution 

added (μL)b 

[BMIM+][Br-] 250 
164 c 

246 d 

[OMIM+][Br-] 150 
78c 

119 d 

[BeBIM+][Br-] 180 
88 c 

132 d 

[BeEOHIM+][Br-] 350 
188 c 

266 d 

[HeOHMIM+][Cl-] 360 
236c 

354d 

a The IL solution was prepared by dissolving 2 g of IL in 10 mL of ultrapure water. 
b The LiNTf2 solution was prepared by dissolving 4 g of LiNTf2 in 10 mL of ultrapure water. 
c Molar ratio of IL:LiNTf2=1:1. 
d Molar ratio of IL:LiNTf2=1:1.5. 
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Table B3. Comparison of the developed method to existing microextraction methods for determination of UV filters. 
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Microextraction 

methoda 

Instrumentationb Extraction time 

(min) 

Simultaneous 

extractions are 

possible  

Number of 

simultaneous 

extractions 

LOD 

(ng L-1) 

Ref. 

SPME GC-MS 30–40 No 1 2.8-26 [1] 

SPME LC 60–75 No 1 100-5000 [2] 

SBSDµE GC-MS 40 Yes -c 13-148 [3] 

SPME GC-MS-MS 25 No 1 .068-12 [4] 

In situ DLLME HS-GC-MS ~7 Yes 6d 500-5000 This work 
a Solid-phase microextraction (SPME); Stir bar sorptive-dispersive microextraction (SBSDµE); Dispersive liquid-liquid 

microextraction (DLLME) 
b Gas chromatography (GC); mass spectrometry (MS); Liquid chromatography (LC); headspace (HS) 
c Not studied 
d The number of simultaneous extractions is limited by the capacity of the centrifuge 
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Figure B1.1H-NMR (500 MHz, Chloroform-d) spectrum of [BMIM+][Br-]: 10.46 (s, 1H), 7.47 

(t, J = 1.8 Hz, 1H), 7.37 (t, J = 1.8 Hz, 1H), 4.32 (t, J = 7.4 Hz, 2H), 4.12 (s, 3H), 1.95-1.84 

(m, 2H), 1.42-1.32 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). 

 

Figure B2.1H-NMR (500 MHz, Chloroform-d) spectrum of [OMIM+][Br-]: 10.45 (s, 1H), 7.46 

(t, J = 1.8 Hz, 1H), 7.33 (t, J = 1.8 Hz, 1H), 4.30 (t, J = 7.5 Hz, 2H), 4.12 (s, 3H), 1.95-1.84 

(m, 2H), 1.37 - 1.18 (m, 10H), 1.85 (t, J = 6.8 Hz, 3H). 



www.manaraa.com

64 
 

 

Figure B3.1H-NMR (500 MHz, DMSO-d6) spectrum of [BeBIM+][Br-]: 9.35 (s, 1H), 7.83 (d, 

J = 1.7 Hz, 2H), 7.47-7.36 (m, 5H), 5.43 (s, 2H), 4.18 (t, J = 7.2 Hz, 2H),  1.83-1.72 (m, 2H), 

1.31-1.20 (m, 2H), 0.9 (t, J = 7.4 Hz, 3H). 

 

Figure B4.1H-NMR (500 MHz, DMSO-d6) spectrum of [BeEOHIM+][Br-]: 9.31 (s, 1H), 7.82 

(t, J = 1.8 Hz, 1H), 7.78 (t, J = 1.8 Hz, 1H), 7.46-7.37 (m, 5H), 5.45 (s, 2H), 5.20 (br. s., 1H), 

4.24 (t, J = 5.0 Hz, 2H), 3.73 (t, J = 4.0 Hz, 2H).  
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Figure B5.1H-NMR (500 MHz, DMSO-d6) spectrum of [HeOHMIM+][Cl-]: 9.28 (s, 1H), 7.81 

(t, J = 1.8 Hz, 1H), 7.73 (t, J = 1.8 Hz, 1H), 4.61 (br. s., 1H), 4.16 (t, J = 7.2 Hz, 2H), 3.86 (s, 

3H), 3.36 (t, J = 5.7 Hz, 2H), 1.77 (td, J = 7.5, 14.8 Hz, 2H), 1.44 - 1.35 (m, 2H), 1.33 - 1.25 

(m, 2H), 1.25 - 1.17 (m, 2H)  

 

 

 

Figure B6.Graphical representation of the in situ DLLME procedure and the reduced volume 

headspace system. 
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Figure B7.Effect of total sample volume on the extraction efficiencies (expressed in peak area) 

of UV filters from ( ) 2.5 mL, ( ) 5 mL, and ( ) 10 mL of ultrapure water. [BMIM+][Br-] 

volume: 20 µL; headspace incubation temperature: 200 °C; IL:NTf2 = 1:1; Concentration of 

analytes ETO and EPP: 1 mg L-1; Concentration of the remaining analytes: 200 µg L-1; Vortex 

time: 10 s. 

 

Figure B8.  Effect of NaCl concentration on extraction efficiencies (expressed in peak area) 

of UV filters from 10 mL total sample volume at ( ) 0% NaCl (w/v), ( ) 3.5% NaCl (w/v), 

and ( ) 5% NaCl (w/v). [BMIM+][Br-] volume: 20 µL; IL:NTf2 = 1:1; Headspace incubation 

temperature: 200 °C; Concentration of analytes ETO and EPP: 1 mg L-1; Concentration of the 

remaining analytes: 200 µg L-1; Vortex time: 30 s. 
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Figure B9.  Effect of pH on extraction efficiencies (expressed in peak area) of UV filters 

from 10 mL total sample volume. ( ) ultrapure water, ( ) pH 4, ( ) pH 6, ( ) pH 8, and ( ) 

pH 10. [BMIM+][Br-] volume: 20 µL; IL:NTf2 = 1:1; Headspace incubation temperature: 

200 °C; Concentration of analytes ETO and EPP: 1 mg L-1; Concentration of the remaining 

analytes: 200 µg L-1; Vortex time: 30 s. 
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